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= High Energy Plasma Photonic Devices

control of high density (>MA) of charged particles like a light control
control of intense light

Focusing Plasma Mirror
for Nonlinear Optics in Vacuum




Plasma M|rrors are Most Popular as

M. K. Moncur (1977)
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(I Plasma Mirror e
Osakal Phops with linear and nonlinear responses

Relativistic
Oscillation Mirror

Fast focusing optics

(f<1)

Self phase modulation and

particle acceleration
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(I Fast Focusing Optics < 1 can be Realized with a FRe
osakal poes  SPheroid Plasma Mirror in a Power Laser System -

' " Focused laser intensities could be
aser 0.66 o o
H3 - ﬁ\ enhanced by 10-20 from increase in
SaasR1O T - the maximum proton energy.
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Vacuum Breaking

Laser interaction
with vacuum

Nonlinear Optics in Vacuum
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@ Key Technologies to realize Ex watt Laser D
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(‘P Simple Plane Wave can not Create the Polarization @

. FEDD

in Vacuum: Non symmetry is required.

Lagrangian density L (F,g) of electromagnetic fields in a vacuum is represented by
the sum of the densities due to the classical L, and QED L’ (F,g) terms.

L(F,Qg) = Lus+ L(F,Q)
= Las+ L (F,g9)+L,(F,g)+:-
a(4F°+79°) aF(8F2+139 )
3607 E2 6307 E4
Nonlinear term

- Lclass

where o = €?/hc is fine-structure constant, F' = (B*—E?)/2. and g = E-B are the invariants

of the electromagnetic field, and E.. = m?c*/eh is called critical electric field.
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The 13t of the QED term is Taken into Account in

1l ] MWIIU i

Lagrangian density L (F,g) of electromagnetic fields in a vacuum is represented
by the sum of the density in classical L ... (F,g) and QED L’ (F,g) terms.

L(F,g) = L=+ L (F, Q)
= Lclass+|L1(F,g)+ L,(F,g)+:-

! | | | Nonlinear term
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(I Polarization due to the nonlinear process in .
osakak s V@cUum Depends on the Focusing Optics ‘

f/number Dependence Intensity Dependence
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(‘P Photon Number (w: Optical Rotation and 3w :

harmonic generation) in Vacuum with High Fields

Wave equations taking account of the polarization and the magnetization
due to the QED correction term in vacuum

A O°P . Ar _ oM
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Photon Number N:

hfa)j4ﬂ KE x B, ‘dS

Where E; and B, are solutions of the wave equations,
t the pulse duration of the square pulse.

The area S is give by the spot size.
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Osak(aI PhoPs

3o Generated in Vacuum could be Observed with
a Fast Focusing Optics and a 200PW Laser
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Photon Number
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Photon number of the o light is counted in a focal depth, which is optically rotated
in vacuum by 90 degd. Total number of 3 » photons is counted taking account of the
propagation in a focal depth.
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= High Energy Density Solid Matter

o Super-Diamond & Solid Metallic Hydrogen
o Compression and Probe Techniques




(qP Approach to Higher Pressures with Lower
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(()» Exploring of High Energy Density Solid

esaa oors States with High Power Lasers
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-Super Diamond, which is harder than Diamond

-Solid Metallic Hydrogen (quantum solid, superconductor)

Those material have never been observed on the earth, whereas the metallic
hydrogen have been predicted end of 19t century.

Conventional Comp. (\Shock)
Conventional Comp. Plasma Liquid/Plasma y e
Liauid Bl \* 10 - '| Metal -like
10 + : -
‘E y ‘E Molecular
=, Equilibrium Hyprid , = Liquid
0 Comp. d g
= =)
T, ©
- e o v A
e - oy 1) 501- : | Solid
5 | /muilib m & Caple Hvbrd | Metall;
Hybrid Comp . Hydrogen
Diamond Molecular Solid
0.1 = == . 901 T T T T
10 100 1000 0.1 1 10 100 1000 10°
Pressure [GPa]

Pressure [GPa]

High power laser can easily create high pressures of more than TPa.
Only a plasma or liquid phase has been produced at such high pressures.
Now we are approaching the solid phase in the TPas regimg. 3
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(l) Isotope effect is probed in High Pressured
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osakal Phops COUld Access Super—-Diamond i.e. >TPa with < 10,000 K

Diamond was re-compressed with an higher impedance material (GGG) than
diamond to be > TPa, for the fist time.

(I) Re-shock with New High Impedance Material (GGG) ER
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«>  Super-Terra on the Earth
Super-Terra ex GJ 876d M =7.5M_ ..

Rivera et al. 2005, Valencia et al. 2007

Massive extrasolar Earth-like planet (GJ 876d)
CMB P =1100 GPa T =5000K
Center P =3400 GPa T=7000K

New dense structures ?

Silicates or oxides
metallization ?

Structure and physical
properties of iron and alloys

Diamond cores

Artist's concept of an extra-solar planet moving
behind its parent star. Credit: NASA/JPL-
Caltech/R. Hurt (55C)



(I) 2 Ways for Super Diamond : Re-shock comp. and
osaal prors EQUIlibrium/non equilibrium hybrid comp.

1. Dynamic Compression with Multiple Shock
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3 step Hybrid Compression to realize solid Metallic H

2. Isentropic dynamic comp.

Re shock comp.
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Phys. Rev. Lett. (2006).
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(I Investigation of Phase Transition under High Pressure

osakal Props  With Micro—Macro Dynamic Probing

Dynamic Probing of Macro Phenomena
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« Dynamic shadow imaging of a compressed region with a pulse x-ray and
proton beam using laser and PPD

At=11 ns

- Lattice structure, Grain size, Electron distribution function from XRD,
WAXS and SAXS using radiation sources with laser and PPD

Dynamic Direct Probing of Micro Phenomena
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(I Dynamic Direct Probing of Micro Phenomena ~)
ssaal poes  With Super TEM (under deveopling) ‘

(DyTEMSHI: Dynamic Transition Electron Microscope Innovation System)

Well-stable and bright monochromatic
MeV Electron-beam

- Small Dynamic TEM (a few 10 nm)
o + o (high speed phenomena: a few 10fs)

... + B (random transient phenomena)
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Creation of High Energy Density New Material
with Laser-Dynamic Compression
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Quenching Model of High
Pressure States

Demonstration of Metallic Si
submitted to Science.

Micro—Macro Dynamic
Probing with Radiation
Sources

Quenching Mechanism

Super Diamond

Solid Metallic Hydro.

Si
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Nature 2004
Phys. Rev. E 2009
Phys. Plasmas 2009
Phys. Rev. E 2010
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Phys. Rev. Lett. 2006
Phys. Plasmas 2009
accepted in J. Phys. 2009
Phys. Rev. Lett. 2010
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BhoPs Summary (BEns

Two topics has been presented as a front edge of the high energy
density sciences with high power lasers

=~ Nonlinear optics in vacuum using plasma photonic devices
such as a plasma focusing mirror.

@ Study on nonlinear optics in vacuum would be realized with a
few 100PW laser and plasma focusing mirror in 10 years.

=~ High Energy Density Solid Material such as super diamond
and solid metallic H, which is realized in high pressure
(Tera Pa) at relatively low temp. (< a few1000K) .

@ We have all technologies such as compression, quenching and
probing to realize the new material.

@ In 10 years, we are approaching the solid metallic hydrogen or
the ultimate metal with high power laser.



