<u>The OSQAR Experiment at CERN:</u> <u>From Photon Science to sub-eV</u> <u>Particle/Astroparticle Physics</u>

Michael Finger

For the OSQAR Collaboration

Charles University in Prague, Czech Republic Faculty of Mathematics and Physics

Osaka, APSE2010, June 17, 2010

The OSQAR Experiment at CERN to probe Quantum Electro Dynamic and Astroparticle Physics

- **1.** Measurement of the Vacuum Magnetic Birefringence Effect
- 2. Search for Axion-like-Particles
- 3. Experimental Setup
- 4. Results
- **5.** Conclusions and outlook

OSQAR - Laser-based Particle Physics experiments for :

1st Goal:

* Optical Search of QED vacuum magnetic birefringence
 Measurement of the VMB down to the level predicted by QED
 A challenge for optical metrology
 ⇒ superconducting high-field magnet, optical cavity & ...
 ...new results are guaranteed

2st Goal:

* Search for Axions and Axion-like-Particles (ALPs) Axions and photon Regeneration (OSQAR) - "2-in-1" experiment.

A collaboration between ten European Institutes and CERN.

Measurement of VMD Effect :

W. Heisenberg and E.Euler (1935): Consequences of Dirac's Theory of the Positron. Prediction of

- * The Vacuum Magnetic Birefringence (VMB)
- * The effective Lagrangian for photons in QED has nonlinear terms
- * VMB from the QED Theory: Euler-Heisenberg Lagrangian, *i.e. Taylor expansion of gauge and Lorentz invariants*
- * Leads to E² and B² dependent changes in the tensors of permittivity & permeability of the vacuum
- * Vacuum magnetic "anomaly" of the refraction index:

Δn = 4.0 x 10**↑-24** *B***↑***2*

Very small effect: 2^{nd} order correction to the Lagrangian, i.e. O(a^3), gives a Δn correction of 1.45% with respect to the dominant term

VMB & Linear Dichroism measurements for Axion Search: *Principle & Proposed Optical Scheme*

Search for Axion-like-Particles

* Peccei-Quinn solution to the strong CP problem:

**Introduce global anomalous chiral U(1)PQ symmetry,

spontaneously broken by the vacuum expectation value of a complex scalar

** Generic prediction for axion coupling and masses

Coupling to photons

** Axion-Like-Particles (ALPs) predicted by many BSM scenarios, e.g. string theory

** Axions with global anomalous PQ symmetries generic in string compactifications

** ALPs are the only non-SUSY candidates for cold dark matter
** Search for AXIONS via "light shining through the wall" experiments
** Linearly polarized laser beam in vacuum along a transverse
magnetic field and optical wall in the beam pipe.

Direct Axion/ALP Search Experiment Photon Regeneration

Nd-YAG laser: Power P = 0.1 - 10 $\lambda = 1064 \text{ nm}$ Optical cavity: F = $10^4 - 10^5$, I = 7 m Detection part: L = 7 m

Experimental setup

Different setups for the two OSQAR goals: 1st Goal: VMB measurement setup 2st Goal: Axion search setup

* Re-use at least 2 benches of the existing test infrastructure for LHC superconducting magnets

- * Use of Class-4 laser Ar+ (488 & 514 nm)
 R&D with R_{max} output coupler (> 99.55 %)
- * Mirror integration inside the LHC magnet aperture with a Z-fold cavity (alternative with a linear one)
- * For Axion/ALP searches: Photon detection with a LN_2 cooled CCD Camera of Princeton Instrument, 1100 pixels of 5 mm height densely packed over 27 mm, QE \approx 50%, DC/pix \approx 0.1/mn

Experiment with the 18 W Ar+ laser & N_2 gas

Results

2007 Pilot run: Photon regeneration setup

- * Use only one LHC Dipole Magnet
- * 18 W Ar+ laser
- * Polarization || to magnetic field
- * Measurements also done with N₂ gas

No signal found in expected region

Conclusion and outlook

Photon regeneration Experiment

Preliminary Phase to check PVLAS results; 1 dipole with/without gas (done)

Phase-1: 2 dipoles, CW laser beam, extra & intra cavity to improve BFRT results (2010)

Phase-2: 2 dipoles, CW laser beam & High Finesse FP cavity (2011-2012)

Phase-3: more than 2 dipoles to be competitive with CAST results

"n-1 Experiment" i.e. VMB & Linear Dichroism-

Phase-1&2 : Measurements of QED prediction in $O(\alpha^2) \& O(\alpha^3)$ respectively within 1 dipole (2012 & 2014)

OSQAR Collaboration, CERN

CERN, Geneva, Switzerland: G. Deferne, P. Pugnat (now at LNCMI-CNRS), M. Schott, A. Siemko

Charles University in Prague, Faculty of Mathematics & Physics, Prague, Czech Republic: M. Finger Jr., M. Finger, T. Husek, P. Motal, I. Procházka, M. Slunečka Czech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic: J. Hošek, M. Král, K. Macúchová, J. Zicha Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic: V. Jarý, M. Virius Institute of Scientific Instruments, ASCR, Brno, Czech Republic A. Srnka IMEP/LAHC - INPG, 38016 Grenoble Cédex-1, France: L. Duvillaret, G. Vitrant, J.M. Duchamp

IN, CNRS – UJF & INPG, BP 166, 38042 Grenoble Cédex-9, France: B. Barbara, R. Ballou, Y. Souche

LASIM , UCB Lyon1 & CNRS, 69622 Villeurbanne, France: M. Durand, J. Morville LSP, UJF & CNRS, 38402 Saint-Martin d'Hères, France: R. Jost, S. Kassi, D. Romanini Technical University in Liberec , Czech Republic: M. Šulc

Warsaw University, Physics Department, Poland: A. Hryczuk, K. A. Meissner

Spokespersons: P. Pugnat, K. A. Meissner