SCIENCE AND APPLICATION OF NUCLEAR RESONANCE FLUORESCENCE: MEASUREMENT OF ²³⁷NP

C.T. Angell, R. Yee, T. Joshi, E.B. Norman

UC Berkeley

W.D. Kulp

GeorgiaTech

G. Warren

PNNL

C. Hicks, S. Korbly, A. Klimenko, C. Wilson

Passport Systems

R. Copping, D. K. Shuh

Advanced Photons and Science Evolution 2010 June 16, 2010, Osaka, Japan

²³⁷Np NRF

- Analog in atomic systems
 - Surface plasmon resonance
- Nuclear Resonance Fluorescence
 - Detection and Assay
 - ²³⁷Np
- Experiment
 - Setup
 - Results
 - Comparison to other actinides

Surface Plasmon Resonance

Courtesy of Robert Baker, UC Berkeley

- Nanoscale features in metal show resonant oscillation of electrons at a fixed frequency.
- Width ~ 100 nm (1-3 eV).
- Analogous to nuclear excitation with photons

Array of nano-holes in a Ag film

Dipole Resonances: Giant and Pygmy

Nuclear Resonance Fluorescence

- Resonantly excite state with γ rays
 - States are narrow:

$$\Gamma \sim 10 - 100 \text{ meV}$$

- De-excites emitting characteristic γ ray
- Unique identifier of nucleus
 - "Thumbprint" for each isotope of interest
- Only E1, M1, E2 transitions excited
 - $\triangle J \leq 2$

$$I_{cs} = \frac{2J+1}{2J_0+1} \left(\frac{\pi\hbar c}{E_{\gamma}}\right)^2 \frac{\Gamma_0 \Gamma_f}{\Gamma}$$

NRF Applications

- Unique identifier of nucleus
 - Can distinguish between fissile materials
- Actively interrogate material
- γ rays are highly penetrating
- Non-destructive
- Applications:
 - Non-invasive assay
 - Spent fuel rods
 - Active Interrogation
 - Cargo containers

Resonantly scattered γ rays are emitted isotropically*

Neptunium-237

Made in nuclear reactors from
 235U

- One of the longest lived components of spent nuclear fuel
 - $T_{1/2} = 2.1$ million years
- Fissile yet not under stringent
 IAEA safeguards
 - Techniques needed to detect and assay it

²³⁷Np criticality experiment at LANL

Target

- Target: ²³⁷Np (NpO₂)
 - 9.6 g total (from assay)
- Powder doubly encapsulated in plastic cylinders
- 8.8 g ¹⁸¹Ta in beam calibration
 - Foil wrapped around target
 - Flux normalizer

In-beam Radiograph of ²³⁷Np Target

Assay of Np Target

- Target composition initially unknown
- Activity: 7 mCi
 - Detector rate over 1 kHz at 2 m
- Used ²³³Pa secular equilibrium

Setup at the High Voltage Research Lab

- γ ray source : Bremsstrahlung
 - Radiation from stopping electrons
- Electron beam -Van De Graff accelerator at the HVRL at MIT
- Radiator
 - thin layer of gold on copper
- 4 HPGe detectors
 - Two detectors on each side
- Pb Shielding
 - 60 cm Pb between radiator and detectors
 - 1.3 cm Pb in front of detectors

Experimental Setup

Detectors

Detectors

²³⁷Np Measured Spectra and States

Energy [keV]	Energy [keV]	
1697	2261	
1728	2288	
1739	2376	
1828	2378	
1862	2381	
1926	2403	
2180	2506	
2252		

Run length (Np): 13 Hours Run length (Np+Ta): 10 Hours Run length (Ta): 6 Hours

²³⁷Np NRF: Comparison to other fissile actinides

- Measured 15 new states in ²³⁷Np
- Integrated cross section:

$$I_{\rm cs} = \frac{2J+1}{2J_0+1} \left(\frac{\pi\hbar c}{E_{\gamma}}\right)^2 \frac{\Gamma_0 \Gamma_f}{\Gamma}$$

- □ Comparison to ²³⁵U / ²³⁹Pu:
 - States are distributed wider in energy
 - Similar I_{cs}
- States discovered can be used to assay and detect
 237Np

Possible Scissors Mode?

- Assume M1 excitations only
- □ Calculate ∑B(M1↑)
 - For each state:

$$B(M1\uparrow) = 2.253 \times 10^{-4} \frac{I_s}{E_{\gamma}}$$

- From theory use Lo Iodice & Richter scissors sum rule
 - Used HFB caluclated deformation, δ, from RIPL-II
 - Mean excitation energies taken from systematics
- Calculate mean energy
 - Mean weighted by B(M1↑) strength for each state
 - Scissors mode systematics (from rare earth elements):

$$E_{x} = 66 \cdot \delta \cdot A^{-1/3}$$

Possible Scissors Mode?

- ∑B(M1↑) and theory
 - Assuming all the measured strength is M1:
 - Most strength missing, possibly from high fragmentation
 - Missing states at higher energies and/or below limit of detectability
- Mean energy and systematics
 - Opposite trend seen –
 experimental excitation
 energies increase while those
 from systematics drops
 - Possibly not scissors mode?

Conclusions

- First measurement of NRF on ²³⁷Np
- 15 new peaks found
- Can be used to identify and assay ²³⁷Np
- Similar in structure and strength to those states identified in ²³⁵U and ²³⁹Pu

 Funded by the US DHS – Domestic Nuclear Detection Office

Integrated Cross Sections I

$$I_{\text{CS}} = \frac{N_{\text{peak}}}{\varepsilon_{ff} \varphi_{flux} f_{\text{target}} f_{\text{pb}} N_{t}}$$

 $\varepsilon(E_{\gamma})$ - efficiency

 $\sigma_{\text{Schiff}}(E_{\gamma}, E_{e})$ – Schiff cross section for Bremmstrahlung

 $f(E_{\gamma})$ – attenuation factor for beam through target (in and out), and through Pb attenuators

N^{target} – number of target nuclei

 $\alpha(E_{\rm e})$ – Flux normalization constant

Target Mass

- Target 1 had unknown component
- Must determine mass from assay
- Unknown composition
- Unknown density
- Use iterative method based on differences in attenuation in 5 gamma rays from ²³³Pa

Different depth,
Different attenuation

Attenuation Factor for NpO₂

Attenuation factor doesn't depend on light element constituent

Attenuation factor changes differently for each line with mass fraction

NpO₂ Mass Fraction

Determining target mass

Small target mass from assay

Sampl e		NpO ₂ Mass [g]	Mass Frac [%]
1	10.37	8.97	.87±.06
2	2.24	2.23	.99±.05