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237Np NRF

 Analog in atomic systems

 Surface plasmon resonance

 Nuclear Resonance Fluorescence

Detection and Assay


237Np

 Experiment

 Setup

Results

Comparison to other actinides



Surface Plasmon Resonance
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Optical Spectra of Nano-Holes in Ag Films
(Resonant oscillation of conduction band electrons 

give rise to strong features at ~3 eV)

Courtesy of Robert Baker, UC Berkeley

 Nanoscale features in 

metal show resonant 

oscillation of electrons 

at a fixed frequency.

 Width ~ 100 nm (1-3 

eV).

 Analogous to nuclear 

excitation with photons

500 nm

Array of nano-holes in a Ag film



Dipole Resonances: Giant and Pygmy
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 E1 photoabsorption cross 

section is dominated by the 

Giant Dipole Resonance (GDR)

 The low energy extrapolation of 

the GDR determines the photo-

absorption cross section

 Lorentzian shape used normally

 Can measure discrete states at 

low energy (1 – 3 MeV)

Discrete states



Nuclear Resonance Fluorescence

 Resonantly excite state 

with γ rays

 States are narrow:

 De-excites emitting 

characteristic γ ray

 Unique identifier of nucleus

 “Thumbprint” for each 

isotope of interest

 Only E1, M1, E2 

transitions excited 

 ΔJ ≤ 2

γ
Possible branching 

to low-lying excited 

state
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NRF Applications

 Unique identifier of nucleus

 Can distinguish between fissile materials

 Actively interrogate material

 γ rays are highly penetrating

 Non-destructive

 Applications:

 Non-invasive assay

 Spent fuel rods

 Active Interrogation

 Cargo containers

γ-ray beam

Resonantly scattered γ rays 

are emitted isotropically*

TargetDetector



Neptunium-237

 Made in nuclear reactors from 
235U

 3-5 tons/year produced world wide

 One of the longest lived 

components of spent nuclear 

fuel

 T1/2 = 2.1 million years

 Fissile – yet not under stringent 

IAEA safeguards

 Techniques needed to detect 

and assay it

237U

237Np

236U235U
n n



237Np criticality experiment at LANL



Target

 Target:  237Np – (NpO2)

 9.6 g total (from assay)

 Powder doubly encapsulated 

in plastic cylinders

 8.8 g 181Ta - in beam 

calibration

 Foil wrapped around target

 Flux normalizer In-beam Radiograph of 237Np Target



Assay of Np Target

 Target composition initially 

unknown

 Activity: 7 mCi

 Detector rate over 1 kHz at 2 m

 Used 233Pa - secular 

equilibrium 300

312

340

375
398

416

233Pa γ rays

9.6 g of 237Np

237Np

233Pa

233U α

β

τ½=2·106 y 

τ½ = 27 d 

2 m
Np Target

HPGe
Detector



Setup at the High Voltage Research 

Lab

 γ ray source : Bremsstrahlung

 Radiation from stopping 

electrons

 Electron beam -Van De Graff 

accelerator at the HVRL at MIT

 Radiator

 thin layer of gold on copper

 4 HPGe detectors

 Two detectors on each side

 Pb Shielding 

 60 cm Pb between radiator and 

detectors

 1.3 cm Pb in front of detectors

HPGe 
Detector

Pb 
Shielding

Radiator

e-

Target

γ
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Bremsstrahlung spectrum

Ee- = 2.8 MeV

Collimator



Experimental Setup

Detectors
Detectors

Electrons (to radiator after 90◦ bend) Collimator

-ray beam



237Np Measured Spectra and 

States

Energy 

[keV]

Energy 

[keV]

1697 2261

1728 2288

1739 2376

1828 2378

1862 2381

1926 2403

2180 2506

2252

Run length (Np): 13 Hours

Run length (Np+Ta):  10 Hours

Run length (Ta): 6 Hours



237Np NRF: Comparison to other 

fissile actinides

 Measured 15 new states in 
237Np

 Integrated cross section:

 Comparison to 235U / 239Pu:

 States are distributed 

wider in energy

 Similar Ics

 States discovered can be 

used to assay and detect 
237Np 
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Possible Scissors Mode?

 Assume M1 excitations only

 Calculate ∑B(M1↑)

 For each state:

 From theory use Lo Iodice & Richter scissors sum rule

 Used HFB caluclated deformation, δ, from RIPL-II

 Mean excitation energies taken from systematics

 Calculate mean energy

 Mean weighted by B(M1↑) strength for each state

 Scissors mode systematics (from rare earth elements):
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Possible Scissors Mode?

 ∑B(M1↑) and theory

 Assuming all the measured 

strength is M1:

 Most strength missing, possibly 

from high fragmentation

 Missing states at higher 

energies and/or below limit of 

detectability

 Mean energy and 

systematics

 Opposite trend seen –

experimental excitation 

energies increase while those 

from systematics drops 

 Possibly not scissors mode?
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Conclusions

 First measurement of NRF on 237Np

 15 new peaks found

 Can be used to identify and assay 237Np

 Similar in structure and strength to those 

states identified in 235U and 239Pu

 Funded by the US DHS – Domestic Nuclear 

Detection Office



Integrated Cross Sections I

tfluxff Nff

N
I

pbtarget

peak

CS




(E) - efficiency

Schiff(E,Ee)– Schiff cross section for 

Bremmstrahlung  

f(E) – attenuation factor for beam through

target (in and out), and through Pb attenuators

Ntarget – number of target nuclei

(Ee) – Flux normalization constant



Target Mass

 Target 1 had unknown 

component

 Must determine mass 

from assay

 Unknown composition

 Unknown density

 Use iterative method 

based on differences in 

attenuation in 5 gamma 

rays from 233Pa

Different depth,  

Different attenuation



Attenuation Factor for NpO2

Attenuation factor doesn’t depend on 

light element constituent

E gamma [MeV] NpO2 Mass Fraction

Attenuation factor changes differently 

for each line with mass fraction



Determining target mass

E gamma [MeV]

Density too high

Correct Density

Small target mass from assay

Sampl

e

Total 

Mass 

[g]

NpO2

Mass 

[g]

Mass 

Frac 

[%]

1 10.37 8.97 .87.06

2 2.24 2.23 .99.05


