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ﬁ Outline

RIMEN

Introduction

Disordered Materials:
Increasing Detail at Low Q
-> TA in Liquid Ga, LO in Liquid NaI

Crystalline Materials:
Phonons as a very sensitive probe of atomic interactions
-> Superconducting Pnictides, Antiferromagnetic NiO

A Move Toward Electronic Dynamics

The RIKEN Quantum NanoDynamics Beamline
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ﬁ X-Ray Scattering Diagram

RIK=N (Non-Resonant)

Two Main Quantities:

Energy Transfer
E or AE = E -E,

Scale: 110 >100 meV

or 110 <001 ps Scale: 1 to 100 nm?

or 50 o ~05 A
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wp.u Dynamic Structure Factor

It is convenient, especially for non-resonant scattering, to separate the properties
of the material and the properties of the interaction of the photon with the

material (electron)

Density-Density
Correlation

Generalized

Dynamic Structure Factor
“The Science"”

Response  BUXOI N i (o A T e

Thy

One Phonon
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WP.N Generic Triple Axis Spectrometer

(IXS and INS)

Detector
o '
X-Rays 0 . Analyzer

CEE— Sample CryStal

, Focussing

High Resolution
Monochromator

Analyzers crystals with large angular acceptance are the limiting optic

Smaller Samples (to 0.01 mm)
IXS vs INS: No Kinematic Constraints
Smaller Backgrounds
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RIMEN

Optics Hutch

/

NRS-1
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SPring-8 BL35XU

NRS-2

Analyzer Hutch

Backscattering Hutch

—

High Heat Load
Monochromator

High Resolution
Optics Table

NRS

Sample Table

Beam Path for Inelastic X-Ray Scattering

Monochromator

IXS
Sample
Position

Detector

Analyzer fa——>"%_

A i
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VIO Backscattering
Monochromator

Optical Table
Vertical beam offset

Sample
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Experiments: 3 to 8 Days
Scan Times: 1 to 72 hours

Beam SPOT on Sample (Bent Cylindrical Mirror): DO um V x 70 um H (FWHM)
KB Setup: ¢~15 microns
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p‘ Disordered Materials

RIKEN
Liquids & Glasses

I_Mg (Kawakita et al)
IXS has no kinematic limitations (AE<«E,) &
Large energy transfer at small momentum Transfer P e =
-> excellent access to mesoscopic length scales . /= /
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Partially Compiete

Optic mode

® a® a® o® o®
™ o® o® o® o®
“™ a® of) o® a® o0
@ o0 00 00 00
- e om S 69 e
" 40 20 00 0
. W e e o %0
e % %o % %
e 9 9 T O9 %
e %o %e %9 %y
o B o Gp 09 %
‘o % % % %,
% % % % o

, 2860 m/s

Shear Wave

o
O
o
£
<
=
+
e
+—
\2)
=
o
A7
)
€
\Y
i -
+—
o)
-
o
>~
Q
an

a® o® 40 L0 L0
0® a® 4® o0
® o™ e® e® a® 40
0 o® 40 40 po
" a® e® a® 0® 40
0 20 00 00 oo
" B e® o0 o oo
% 00 00 00 0o
e ® o v o0 00
e %0 00 09 0o
e B o 9 09 oo
e % og oy o
e % oy oy 0oy

Animations for a crystal

Good agreement with MD

liquid Ga
40°C
residual x2
Weak, but significant.
Baron, June 2010
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po Phonons via IXS <

RIMEN

Phonon spectra & dispersion are a sensitive probe of inter-atomic interactions.
The more so in correlated materials where they are influenced
by interaction with other systems
(electron phonon coupling, magneto-elastic coupling...)

Small Samples (micro-grams).

The X-Ray Nearly No Background.
Large energy transfer with good energy resolution.

Simple & good momentum resolution (up to rate).

Advantage

Light-Atom modes in heavy materials (absorption).
Sub-meV resolution is difficult.
Very few instruments (5) & limited beam time.

Where X-Rays
Are Less Good

Note: phonons are complex compared to maghetism
Phonons: All atoms in a cell contribute
Magnons: Typically only one or fwo magnetic atoms/cell

Baron, June 2010 Partially Complete
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RIMEN

MgB,: Strong electron-phonon to a specific phonon mode drives the high T,

MgB,

Tc = 39K © 0 e R Baron, et al, PRL 92(2004) 197004

Akimitsu et al

E29 LlneW|dTh

Good Agreement With LDA - Dispersion & Linewidth
-> Consistent picture of phonon mediated superconductivity
Baron, June 2010 Partially Complete
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RIMEN

Bohnen, et al, PRL (2002)

o 300 &280K
150 K
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Kuroiwa et al, PRB (R), 2008

Proximity to a Structural Phase Transition Leads to a Soft Mode & Hi?her Tc
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e Two-Phonon Contribution

Baron, et al, PRB (2007)
l\/IgB’ (-.02 0 3.32) 300K

(a) Ab-Initio Model Calculation

e Data
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(b) Fit
(Inc. Two-Phonon
Contribution)

Intensity [arb. u.]

Energy Transfer [meV]

The IXS spectra are reliable for rather subtle features...
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SPring.. 8
ﬁ The Iron-Pnictide Superconductors <

RIMEN

High-Tc demonstrated February 2008 (Hosono's group)

Metal

Cuprate

Organic matter
Semiconductor
Fe-based system

(TMTSF),PFg

1920 1940 1960 1980 K 7
Year oY

Parent (non SC) Shows Mag. Order & Tetragonal-> Orthorhombic Transition at ~140 K
Baron, June 2010 Partially Complete
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wp.u Phonons In the Iron Pnictides

Phonon response, in itself, is remarkably plain:
NO very large line-widths (typically < 2 meV)
NO obvious anomalies (yet).

NO asymmetric Raman lines

But also: Rather poor agreement with calculation

Iron Isotope Effect:
Liu et al. (Nature): BCS Effect on Tc & Resistive Transitions (1111, 122)
Shirage et al. pry): Small and negative effect in 122

Baron, June 2010 Partially Complete




ﬁ Samples

RIMEN

Single Crystals of PrFeAsO,,

Parent: Resistivity Change at ~145 K

Typically "reasonable” crystal quality
~1 degree mosaic

Measurements
Wide variety of Q and T<=300K
Many small changes with doping & T

First question: what is important?
-> Compare with calculation...

Baron, June 2010

PrFeAsO,.,
20 um Thick
Transverse: ~0.1 to ~0.5 mm

Ishikado, Kito, & Eisaki
(at AIST)

Partially Complete




po Different Models: C=)

RIMEN

Original: Straight GGA for Tetragonal stoichiometric PrFeAsO
Soft: As "Original” but soften the FeAs NN Force constant by 30%

Soft O7/8: Super cell 2x2x1 with one oxygen removed
and softened Fe-As NN Force constant
(31 atoms/prim cell, Tetragonal, No Magnetism)

Magnetic Orthorhombic: LSDA for LaFeAsO with
stripe structure of De la Cruz (16 atoms/prim. cell, 72 Ibam)

Magnetic Tetragonal: LSDA for LaFeAsO with stripes
Force a=b (to distinguish effects of structure vs magnetism)

Clipped: Mag. Ortho. with cut force constant

Soft IP: "Original” but soften FeAs NN In Plane components

Calculations: Nakamura & Machida
Baron, June 2010 Partially Complete
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iz Iron Pnictides: WIP

Still basic questions.

One possibility: Fluctuating magnetism

Upper limit for lifetime:
~ ns from Mossbauer
(Kitao, et al, JPSJ)

Model of anti-phase domains
Mazin&Johannes, Nat. PPX
Baron, June 2010 Partially Complete




SPring.. 8
ﬁ Magneto-Elastic Coupling & <
— Anisotropic Polarizability

(Polarization)

Classic cubic transition metal oxides (TMO) mno, Nio) show
trigonal (few%) distortion when anitiferromagnetic (AFO)
order appears below Ty, (Mno: 116K, Ni0:525K)

AFO: Ferromagneteic Planes Perpendicular to [111] Ordering Direction

SuperExchange

Lattice
Interaction > AFO > Distortion

(J)

Argument based on "Modern Thy. of Ferroelectrics” (Berry phase calc)

Resta, 1992, King-Smith & Vandepgbilt 1993
Baron, June 2010 e e T Partially Complete




SPringe.
[ INS Results from MnO & NiO D

RINEN E. Chung et al., PRB (2003)

W

—o— AFIIMnO, 43K
A ] -0- PM MnO, 150K
—&— ZCat(222) 5 B Wagner sfal. M0 K
O ZCat(220)

ZC splitting (meV)

40 80 120
Temperature (K)

Intensity at (2 20) (counts)

Energy transfer (meV)

Twinned MnO:

E,-E, ~35 meV

First IXS Results:

No obvious splitting in NiO (1.5 meV Resolution
P ’ ( ) Nforl -/ — L, ~5 meV

Raw Data not shown

" —a= AFILNIO, 300 K
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Luo et al (2007) 3.8

Park & Choi (2009) 2.6
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e Careful Experiment

De-Twinned NiO Crystal

Trigonal [111] Axis selected from annealing & pressure
Magnetic Orientation from weak applied field

Q=t+q

« =(151), g=(0.1,0.1,0.1)

s T=(151), g=(0.1,-0.1,0.1)

Selection & Calc
t=(333), g=(0.1,-0.1,0.1) _> MOSTIY ” Poln 1

©=(333), 9=(0.1,0.1,-0.1)

T 42 44 46 48 50 52
Energy transfer (meV) Energy transfer (meV)

Baron June 2010 Uchiyama et al, 2010

E,-E, ~ -1 meV

Partially Complete




@ Calculation Compared to Experiment

Luo et al (2007)
Park & Choi (2009)

Chung et al (INS) ~5.0
Uchiyama et al (IXS) -1.0 (RT)

Also helps reconcile measured/calculated exchange interactions with observed lattice contraction

Baron, June 2010 Partially Complete




R RIKEN <

RIMEN . .
Quantum NanoDynamics Beamline

(BL43LXU)

Atomic Dynamics: Many experiments now flux limited.
Phonons in complex materials
Extreme environments (HT, HP liquids)
High pressure DAC work (Geology)
Excitations in metal glasses
Super-cooled liquids
Surface Dynamics of Liquids & Solids
Dynamics of thin films (Graphene)

Baron, June 2010 Partially Complete
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wp.u Beamline Design

Goal: Take advantage of the unique characteristics of SPring-8 to
oal. Significantly improve experimental possibilities

Take advantage of
1. Long Straight Section (30m)
) ngh Ener'gy (8 GeV) 2 BLA3LXU
. In-Vacuum (Small Gap) Undulators
. Selective Tuning Range (15 to 25 keV) |
. New (but proven) Optical Ideas BL35XU
. Modern area detectors ? , .

oueI[LIg

[Md %1 0/ wy_perwys; o0
C (9 C
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ﬁ High Resolution Spectrometer <

RIMEN

Based on a 10m Arm
Energy resolution: <1 to 40 meV (Backscattering mono.)
Analyzers From Si(888) - Si(13 13 13) 15.8-25.7 keV
Aim at 0.7 meV resolution with a Temperature Gradient
Designed to have good momentum resolution (0.01-0.1 A1)
Maximum momentum fransfer ~7 to 12 A-l

42 Element
Analyzer Array

r Senser (4P

Baron, June 2010 Partially Complete
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kR Medium Resolution Spectrometer

Based ona 2m Arm
Energy resolution: ~10 to 100 meV (mono dependent)
Analyzers at Si(888) at 15.816 keV (reduced tails)
Dispersion compensation with Temperature Gradient
keeps high resolution with large space near sample.
Maximum momentum transfer ~15 A

Med. Res. Med. Res.
Optics Spectrometer

Target: Momentum resolved optical spectroscopy
Localized Excitations, (sub-eV) Gaps, Orbitons

Baron, June 2010 Partially Complete
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A= Collaborators

Liquids: M. Inui, K. Tamura, S. Hosokawa, Y. Kawakita, D. Ishikawa,
Y. Kjihara, K. Matsuda, T. Ichitsubo, W.-C. Pilgrim, H. Sinn,
L.E. Gonzalez, D.J. Gonzalez, S. Tsutsui, T. Bryk, F. Demmel,
I. Mryglod, Y. Ohmasa

Pnictides: T. Fukuda, N.Nakamura, M. Machida, H. Uchiyama
M. Ishikado, H. Kito, H. Eisaki J. Mizuki, M. Arai, S. Shamoto

H. Uchiyama, S. Tsutsui, D. Ishikawa, M. Haverkort,
G. Sawatzky, Y. Cai, N. Hiraoka
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RIHEH Collaborators: BL43LXU

Initial Discussions (Beginning in 2004):

Hitoshi TANAKA, Kouchi SOUTOME,
Takashi TANAKA, Hideo KITAMURA
Tetsuro MOCHIZUKI
Sunao TAKAHASHI
Kunikazu TAKESHITA
Haruhiko OHASHI, Shunji GOTO
Daisuke ISHIKAWA

More Complete/Recent List of Contributors Includes:
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