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Outline 
Introduction 

Disordered Materials:  
 Increasing Detail at Low Q 
  -> TA in Liquid Ga,  LO in Liquid NaI 

Crystalline Materials: 
 Phonons as a very sensitive probe of atomic interactions 
  -> Superconducting Pnictides,  Antiferromagnetic NiO 

A Move Toward Electronic Dynamics 

The RIKEN Quantum NanoDynamics Beamline 
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X-Ray Scattering Diagram 
(Non-Resonant) 
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Two Main Quantities: 
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Scale:  1 to >100 meV  
or 1 to <0.01 ps Scale: 1 to 100 nm-1 

or  50 to ~0.5 Å 
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Dynamic Structure Factor 
It is convenient, especially for non-resonant scattering, to separate the properties 
of the material and the properties of the interaction of the photon with the 
material (electron) 
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Dynamic Structure Factor 
“The Science” 
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Generic Triple Axis Spectrometer 
(IXS and INS) 

Analyzers crystals with large angular acceptance are the limiting optic 

For x-rays, resolution, ~ 1meV / 20 keV ~ 5x10-8, is severe. 

  Smaller Samples (to 0.01 mm) 
IXS vs INS:  No Kinematic Constraints 

  Smaller Backgrounds 
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SPring-8 BL35XU 

BL LAYOUT	


DetectorBeam Path for Inelastic X-Ray Scattering

Monochromator Sample
MirrorAnalyzer

    IXS
Sample
Position

Mirror

Optical Table
Vertical beam offset

Backscattering 
Monochromator

NRS
Sample Table

High Heat Load
Monochromator

High Resolution
Optics Table

Optics Hutch NRS-1 NRS-2 Analyzer Hutch Backscattering Hutch

BL35XU Hutch Layout

55°

~eV	



~ meV	



Beam Spot on Sample (Bent Cylindrical Mirror):  50 µm V x 70 µm H   (FWHM)  
KB Setup: φ~15 microns 

Experiments: 3 to 8 Days 
Scan Times: 1 to 72 hours 
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Spectrometer Photo 
Spectrometer Photo 

10m Arm & 12 Analyzers 
Vacuum Flight Path	



Granite Base w/Airpads	



Sample	



Incident�Beam	


φ∼70 µm	



φ ∼ 15 µm Possible	



Analyzer Array	


Slit System	



12 Chan. CZT Detector	
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Disordered Materials 
Liquids & Glasses 

l-Mg (Kawakita et al) 

+15 meV	



Teixeira, et al 
INS (1985) 

-15 meV	



Sette et al 
IXS (1996) 

IXS has no kinematic limitations (ΔE<<<Eγ) 
    Large energy transfer at small momentum transfer 
    -> excellent access to mesoscopic length scales 
         Q<10 nm-1 (d from 5 to 50 Å) 

Water 

Data of Foret et al 
INS (1998) 

Glassy-Se 

Scopigno et al 
IXS (2004) 

Investigating Finer Details… 
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Beyond the Quasi-Elastic + “LA” model 

Pressure Wave Shear Wave 

Optic mode 
(at low Q!)    

Weak, but significant. 
Good agreement with MD 

Animations for a crystal 

S. Hosokawa 
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Phonons via IXS 

Note: phonons are complex compared to magnetism  
 Phonons:  All atoms in a cell contribute 
 Magnons:  Typically only one or two magnetic atoms/cell 

The X-Ray  
Advantage 

Where X-Rays  
Are Less Good 

Phonon spectra & dispersion are a sensitive probe of inter-atomic interactions. 
 The more so in correlated materials where they are influenced 
  by interaction with other systems  
  (electron phonon coupling, magneto-elastic coupling…) 

Small Samples (micro-grams). 
Nearly No Background. 
Large energy transfer with good energy resolution. 
Simple & good momentum resolution (up to rate). 

Light-Atom modes in heavy materials (absorption). 
Sub-meV resolution is difficult. 
Very few instruments (5) & limited beam time. 
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Examples of Conventional Materials 
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Baron, et al, PRL 92(2004) 197004 

Good Agreement With LDA – Dispersion & Linewidth  
 -> Consistent picture of phonon mediated superconductivity 

MgB2   
Tc = 39K 

Akimitsu et al 
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Points: Measurements at BL35

Lines:  Calculations by Bohnen et al.
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E2g

A2u

E1u

E2g Linewidth Dispersion 

MgB2:  Strong electron-phonon to a specific phonon mode drives the high Tc 
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CaAlSi: Soft Mode Driven Superconductor 

MgB2 

Bohnen, et al, PRL (2002) 

Heid, et al,  

Kuroiwa et al, PRB (R), 2008  

1H - CaAlSi 

Proximity to a Structural Phase Transition Leads to a Soft Mode & Higher Tc 



Baron, June 2010 Partially Complete 

Two-Phonon Contribution 
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Modes that, by symmetry, 
should not be observed! 
(at the selected momentum transfers 
             c-axis geometry, Qllc* ) 

The IXS spectra are reliable for rather subtle features… 

Baron, et al, PRB (2007) 
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The Iron-Pnictide Superconductors 

Fe Planes with Tetrahedral As 
Parent (non SC) Shows Mag. Order & Tetragonal-> Orthorhombic Transition at ~140 K 

High-Tc demonstrated February 2008  (Hosono’s group) 
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Phonons In the Iron Pnictides 

Phonon response, in itself, is remarkably plain: 

 NO very large line-widths (typically < 2 meV) 

 NO obvious anomalies (yet). 

 NO asymmetric Raman lines 

But also:  Rather poor agreement with calculation  

Iron Isotope Effect: 
 Liu et al. (Nature):  BCS Effect on Tc & Resistive Transitions (1111, 122) 
 Shirage et al. (PRL):  Small and negative effect in 122 
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Samples 

Single Crystals of  PrFeAsO1-y 

 Superconductor: Tc (onset) ~ 45 K 

 Parent:  Resistivity Change at ~145 K 

PrFeAsO1-y 
20 um Thick 

Transverse:  ~0.1 to ~0.5 mm 

Ishikado, Kito, & Eisaki  
(at AIST) 

~100 
µm 

Measurements  
 Wide variety of Q and T<=300K 
 Many small changes with doping & T 

First question: what is important? 
 -> Compare with calculation…  

Typically “reasonable” crystal quality
 ~1 degree mosaic 
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Different Models: 

Original:  Straight GGA for Tetragonal stoichiometric PrFeAsO  

Soft:  As “Original” but soften the FeAs NN Force constant by 30% 

Soft O7/8:  Super cell 2x2x1 with one oxygen removed 
 and softened Fe-As NN Force constant  
 (31 atoms/prim cell, Tetragonal, No Magnetism)   

Magnetic Orthorhombic:  LSDA for LaFeAsO with  
 stripe structure of De la Cruz (16 atoms/prim. cell, 72 Ibam) 

Magnetic Tetragonal:  LSDA for LaFeAsO with stripes 
 Force a=b (to distinguish effects of structure vs magnetism) 

Clipped: Mag. Ortho. with cut force constant 

Soft IP:  “Original” but soften FeAs NN In Plane components 

Calculations: Nakamura & Machida 
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Iron Pnictides: WIP 

Still basic questions.  

Over-All: 
 Phonons agree better with “pure” magnetic calculations 
  But these seem to over-estimate effects, even in Parent   
 If allow modifications, IP soft model also OK 

But: seems like there is an ingredient missing 

Model of anti-phase domains 
Mazin&Johannes, Nat. Phys. 

One possibility:  Fluctuating magnetism 
Upper limit for lifetime:   
~ ns from Mossbauer   
(Kitao, et al, JPSJ) 
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Magneto-Elastic Coupling &  
Anisotropic Polarizability 

 (Polarization) 

Classic cubic transition metal oxides (TMO) (Mn0, NiO) show  
 trigonal (few%) distortion when anitiferromagnetic (AFO)  
 order appears below TN (MnO: 116K, NiO:525K) 

AFO SuperExchange  
Interaction 

(J) 

Lattice 
Distortion 

Argument based on “Modern Thy. of Ferroelectrics”  (Berry phase calc)  
Resta, 1992,  King-Smith & Vanderbilt 1993 

Anisotropic 
Polarization or 

Charge 

Massidda et al,  
PRL (1999) Anisotropic 

TO Phonon 

AFO:  Ferromagneteic Planes Perpendicular to [111] Ordering Direction 
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INS Results from MnO & NiO 
E. Chung et al., PRB (2003) 

Twinned MnO:  

MnO 

NiO 

NiO: 
Raw Data not shown 

First IXS Results:  
No obvious splitting in NiO (1.5 meV Resolution) 

€ 

Ell − E⊥ ~ 3.5  meV

€ 

Ell − E⊥ ~ 5  meV
LSDA+U MnO NiO 

Luo et al (2007) 3.8 -1.8 

Park & Choi (2009) 2.6 -1.8 
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Careful Experiment 
De-Twinned NiO Crystal 

 Trigonal [111] Axis selected from annealing & pressure 
  Magnetic Orientation from weak applied field 

Selection Rule  
-> Perp. Poln.  

€ 

E⊥

€ 

Ell

€ 

Ell − E⊥ ~  −1 meV

Selection & Calc 
-> Mostly ll Poln.  

Uchiyama et al, 2010 
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Calculation Compared to Experiment 

LSDA+U MnO NiO 
Luo et al (2007) 3.8 -1.8 

Park & Choi (2009) 2.6 -1.8 

Experiment MnO NiO 
Chung et al (INS) 3.5 ~5.0 

Uchiyama et al (IXS) ~3.5 -1.0 (RT) 

-> Anisotropic polarizability is reasonable  

Also helps reconcile measured/calculated exchange interactions with observed lattice contraction 
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Atomic Dynamics:  Many experiments now flux limited. 
   Phonons in complex materials 
   Extreme environments (HT, HP liquids) 
   High pressure DAC work (Geology) 
   Excitations in metal glasses 
   Super-cooled liquids 
   Surface Dynamics of Liquids & Solids 
   Dynamics of thin films (Graphene) 

New:  Electronic Excitations, NRIXS 
 Extend Optical, Raman Spectroscopy to finite momentum transfers. 

RIKEN 
Quantum NanoDynamics Beamline 

(BL43LXU) 
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Beamline Design 
Take advantage of the unique characteristics of SPring-8 to  

Significantly improve experimental possibilities 

Take advantage of  
 1.  Long Straight Section (30m) 
 2.  High Energy (8 GeV) 
 3.  In-Vacuum (Small Gap) Undulators 
 4.  Selective Tuning Range (15 to 25 keV) 
 5.  New (but proven) Optical Ideas 
 6.  Modern area detectors 

Gives:   1.  The most brilliant hard x-ray beamline in the world 
 2.  The highest flux source for IXS   

Goal: 
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Two Spectrometers 

“High–Resolution” = Large, 10m Arm.   
  Resolution from <1 meV to ~40 meV, ΔQ Small (x1) 

“Medium resolution” = Smaller (2m) arm.   
  Resolution 10 to 100 meV, ΔQ Large (x25) 
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High Resolution Spectrometer 

Based on a 10m Arm 
 Energy resolution:  <1 to 40 meV  (Backscattering mono.) 
 Analyzers From Si(888) – Si(13 13 13) 15.8-25.7 keV  
 Aim at 0.7 meV resolution with a Temperature Gradient 
 Designed to have good momentum resolution (0.01-0.1 Å-1) 
 Maximum momentum transfer ~7 to 12 Å-1 

42 Element  
Analyzer Array 
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Medium Resolution Spectrometer 

Based on a 2m Arm 
 Energy resolution:  ~10 to 100 meV  (mono dependent) 
 Analyzers at Si(888) at 15.816 keV (reduced tails) 
 Dispersion compensation with Temperature Gradient 
  keeps high resolution with large space near sample. 
 Maximum momentum transfer ~15 Å 

Target:  Momentum resolved optical spectroscopy 
 Localized Excitations, (sub-eV) Gaps, Orbitons  
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