LEPS I and II GeV photons for hadron physics

M. Niiyama (Kyoto Univ.)

Contents

- 1. Photon beam for hadron physics
- 2. LEPS I
- 3. LEPS II project

Photon beam for hadron physics

• Hadron

- Quark model (QCD)
 - 3 quarks (baryon), quark-antiquark (meson)
 - Missing resonance
- Exotic hadrons
 - glue ball, tetra-quark, penta-quark
- Study QCD beyond Quark model

• Photon beam

- Sensitive to the charge of hadrons or quarks
- Polarization \rightarrow Parity filter for exchanged particle
- Backward Compton : narrow beam,

good for forward angle measurement 2

Super Photon Ring 8 GeV (SPring-8)

Schematic View of LEPS I Facility

Backward-Compton Scattered Photon

8 GeV electrons in SPring-8

- + 351nm Ar laser (3.5eV) → maximum 2.4 GeV photon
- + 266nm Ar laser (4.6eV) 1W→ maximum 3.0 GeV photon
- Laser Power ~6 W (351nm) → Photon Flux ~1 Mcps (2.4 GeV)
- Eγ measured by tagging a recoil electron → Eγ>1.5 GeV, ΔEγ ~10 MeV
 Laser linear polarization 95-100% ⇒ Highly polarized γ beam

LEPS spectrometer

Charged particle spectrometer with forward acceptance PID from momentum and time-of-flight measurements

Original motivation for LEPS I

- $\boldsymbol{\cdot}$ Glueball hunt in diffractive $\boldsymbol{\phi}$ photoproduction

Parity filter for exchanged particle in t-channel

Decay Plane // $\vec{\gamma}$ natural parity exchange (-1)^J (Pomeron, Scalar Glueball, Scalar mesons)

Decay Plane γ unnatural parity exchange $-(-1)^{J}$ (Pseudoscalar mesons π,η)

Relative contributions from natural, unnatural parity exchanges

Unexpected bump \rightarrow Spin decomposition with polarized target

LEPS I Results of Θ⁺ analysis (Details are in Prof.Nakano's talk on Friday) nK⁺ invariant mass with MMSA: Fermi motion effect corrected.

 Δ (-2ln*L*) =31.1 for Δndf =2 \longrightarrow 5.2 σ Prob(5.2 σ) = 2×10⁻⁷

Counter evidence of Θ^+ from CLAS J-Lab

Difference between LEPS and CLAS for $\gamma n \rightarrow K^-\Theta^+$ study

LEPS

Good forward angle coverage

Poor wide angle coverage

Low energy

Symmetric acceptance for K^+ and $K^- \leftrightarrow$ Asymmetric acceptance

M_{KK}≥1.04 GeV/c²

Select quasi-free process

← Poor forward angle coverage

CLAS

←→ Good wide angle coverage

← Medium energy

- \leftrightarrow M_{KK} > 1.07 GeV/c²
- ←→ Require re-scattering or large

Fermi momentum of a spectator LEPS: $\theta_{LAB} < 20$ degree

K⁻ coverage:

CLAS: θ_{LAB} > 20 degree

Detector with wide angular coverage \rightarrow LEPS2

Interaction region (BL31ID)

Beam size @ target (RMS): x ~2cm, y~1cm

4 laser injection

Thanks to large aperture in BL31IS.

Experimental building for LEPS2

LEPS II detector setup

Summary

• LEPS I

- Hadron physics with linear polarized photons
- Motivated hadron production at forward angles
- Penta-quark Θ is in controversial with CLAS J-Lab
- LEPS II
 - 10 times higher intensity with 3 GeV photons
 - Large angular coverage up to CLAS region to measure Θ production
 - Large solenoid magnet will be shipped from US to SPring-8 in this fiscal year.

$\Delta P/P$ at forward region

2° <θ< 17 °
 Vertex + Fd MWDC
 No SW tracker

At 10 degree ∆P/P = 1.3% (He4 gas) 1.9% (Air)

θ > 17°

MS effect in SW tracker TPC \Rightarrow Ar/CH₄ or Ne/CH₄

Momentum dep. of $\Delta P/P$

Requirement

Detection of the multi-charged particles and neutral particles

• Reaction (MM) $\Rightarrow \Delta P/P \sim 1\%$ for 1GeV/c kaon

at forward θ

+ π/K separation.

• Decay (IM) \Rightarrow Low momentum down to 0.1GeV/c

Wide polar angle, smooth and full acceptance for azimuthal direction

- Coplanarity
- Decay distribution
- Polarization measurement